Some generating functions of the Riemann zeta function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some calculations of the Riemann zeta-function

“Fuzzy” models and 802.11 mesh networks have garnered improbable interest from both computational biologists and experts in the last several years. Given the current status of real-time epistemologies, futurists daringly desire the construction of DHCP, which embodies the practical principles of networking. In order to accomplish this ambition, we introduce new concurrent methodologies (Krang),...

متن کامل

Some Identities for the Riemann Zeta-function

Several identities for the Riemann zeta-function ζ(s) are proved. For example, if s = σ + it and σ > 0, then ∞ −∞ (1 − 2 1−s)ζ(s) s 2 dt = π σ (1 − 2 1−2σ)ζ(2σ). Let as usual ζ(s) = ∞ n=1 n −s (ℜe s > 1) denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of |ζ(1 2 + it)| 2k , k ∈ N, weighted by suitable functions. In particular, the prob...

متن کامل

Some Identities for the Riemann Zeta-function Ii

Several identities for the Riemann zeta-function ζ(s) are proved. For example, if φ1(x) := {x} = x− [x], φn(x) := ∫ ∞ 0 {u}φn−1 ( x u ) du u (n ≥ 2), then ζn(s) (−s) = ∫ ∞ 0 φn(x)x −1−s dx (s = σ + it, 0 < σ < 1) and 1 2π ∫ ∞ −∞ |ζ(σ + it)| (σ + t) dt = ∫ ∞ 0 φ n (x)x dx (0 < σ < 1). Let as usual ζ(s) = ∑ ∞ n=1 n −s (Re s > 1) denote the Riemann zeta-function. This note is the continuation of t...

متن کامل

q-Riemann zeta function

We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Center Publications

سال: 2019

ISSN: 0137-6934,1730-6299

DOI: 10.4064/bc118-6