Some generating functions of the Riemann zeta function
نویسندگان
چکیده
منابع مشابه
Some calculations of the Riemann zeta-function
“Fuzzy” models and 802.11 mesh networks have garnered improbable interest from both computational biologists and experts in the last several years. Given the current status of real-time epistemologies, futurists daringly desire the construction of DHCP, which embodies the practical principles of networking. In order to accomplish this ambition, we introduce new concurrent methodologies (Krang),...
متن کاملSome Identities for the Riemann Zeta-function
Several identities for the Riemann zeta-function ζ(s) are proved. For example, if s = σ + it and σ > 0, then ∞ −∞ (1 − 2 1−s)ζ(s) s 2 dt = π σ (1 − 2 1−2σ)ζ(2σ). Let as usual ζ(s) = ∞ n=1 n −s (ℜe s > 1) denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of |ζ(1 2 + it)| 2k , k ∈ N, weighted by suitable functions. In particular, the prob...
متن کاملSome Identities for the Riemann Zeta-function Ii
Several identities for the Riemann zeta-function ζ(s) are proved. For example, if φ1(x) := {x} = x− [x], φn(x) := ∫ ∞ 0 {u}φn−1 ( x u ) du u (n ≥ 2), then ζn(s) (−s) = ∫ ∞ 0 φn(x)x −1−s dx (s = σ + it, 0 < σ < 1) and 1 2π ∫ ∞ −∞ |ζ(σ + it)| (σ + t) dt = ∫ ∞ 0 φ n (x)x dx (0 < σ < 1). Let as usual ζ(s) = ∑ ∞ n=1 n −s (Re s > 1) denote the Riemann zeta-function. This note is the continuation of t...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 2019
ISSN: 0137-6934,1730-6299
DOI: 10.4064/bc118-6